Course Type	Course Code	Name of Course	L	Т	P	Credit
DP NMEC534		Mechanical Characterization Lab	0	0	3	1.5

Course Objective

Primary objective of the course is to:

- Introduce the students with mechanical behavior different materials such as Non-linear Elastic materials (Hyper elastic/Visco-elastic), Elasto-plastic materials, Orthotropic materials (FRP composites, Metal-matrix composites) & Anisotropic materials (Sedimentary rock structures).
- Expose the students to the experimental procedures to characterize these materials in terms different material properties.
- Introduce the students to the fabrication procedure of different advanced materials (Nano Metalmatrix composite & FRP composite)

Learning Outcomes

On successful completion of this course, students will understand:

- Mechanical behavior of different materials such as Non-linear Elastic materials (Hyper elastic/Visco-elastic), Elasto-plastic materials, Orthotropic materials (FRP composites, Metal-matrix composites) & Anisotropic materials (rock specimens)
- Experimental techniques to characterize such materials in term of different material properties.
- Synthesis/Fabrication of different advanced materials such as Nano-Metal Matrix composites & Laminated FRP composites

Exp. No.	Topics to be Covered	Contact Hours	Learning Outcome
1	Synthesis of Nano Metal Matrix composites (Orthotropic materials)	6	Students will learn the procedure to synthesize Nano Metal Matrix composites.
2	Characterization of Nano Metal Matrix composites (Orthotropic material behavior)	3	Students will understand the orthotropic material behavior through characterization of Nano Metal Matrix composites (microstructural, physical and surface mechanical)
3	Stress Relaxation behavior of thermo setting resin-based polymer under tension (Visco-elastic material behavior)	3	Students will understand the visco-elastic material behavior through tensile testing of thermo-setting resin based polymers Sample will be subjected to a constant stress and the change in stress with time will be recorded. The Prony series model will be used to fit the stress vs. time plot.
4	Stress strain behavior of thermo setting resin-based polymer under compression (Elasto-plastic material behavior)	3	Students will understand the Elasto-plastic material behavior through compression testing of thermo-setting resin based polymers.
5	Large Deformation Analysis of Silicon Rubber under tension (Hyper-elastic material behavior)	6	Students will understand the Hyper-elastic material behavior through tension testing of Silicon Rubber
6	Fabrication of laminated FRP composites (Orthotropic Materials)	3	Students will learn to fabricate laminated FRP composite plates by hand layur technique. They will also understand the importance of fibre/matrix/void volume fractions in FRP composite fabrication.
	Characterization of Laminated FRP	3	Students will learn the characterization o

				unidirectional Fibre Reinforced Polymer
7	composite materials (Orthotropic		Composites in terms of Stress ~ strain	
	material behavior)		behavior, Elastic modulus, Poisson's ratio	
8			and Modulus of rigidity.	
				Students will learn to understand the
	Mechanical behavior of rock	3	behavior of anisotropic rock specimens in	
	specimens (Anisotropic material		terms of compressive strength, tensile	
	behavior)		strength (Brazilian testing), shear strength &	
			-	Hardness (point load indexing)
				Students will learn to characterize
9	Characterization of unconfined rock specimens under compression	6	anisotropic rock specimens in terms of	
	(Anisotropic material behavior)		Modulus of Elasticity, Poison's ratio	
		(Amisotropic material behavior)		(Unconfined Compression Testing).
				Students will learn to quantify the fracture
10	Fracture behavior of rock specimens	6	behavior of anisotropic rock specimens	
	10	(Anisotropic material behavior)	0	through determination of Mode-I/II Fracture
				toughness.
	Total		42	

Text Books:

- 1. Composite Materials: Production, Properties, Testing & Applications. K. Srinivasan, Narosa Publishing House
- 2. Composite Materials: Science and Engineering. K.K. Chawla, Springer Publications

India Standard codes/Reference Books:

- 1. Defects and damages in Composite Materials and structures, Ricard Benton Heslehurst, CRC Press Publication
- 2. Anisotropic Rock joints: Direct shear strength determination: IS: 12634: 1989
- 3. Tensile strength of Anisotropic Rock Mass: IS: 10082-1981
- 4. Elasticity and Poison's ratio for anisotropic rock mass: IS: 9221-1979